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Abstract. The issue of the decoupling of extreme type-II superconducting thin films (λL →∞)
with weakly Josephson-coupled layers in magnetic field parallel to the layers is considered via
the corresponding frustratedXY model used to describe the mixed phase in the critical regime.
For the general case of arbitrary field orientations such that the perpendicular magnetic field
component is larger than the decoupling crossover scale characteristic of layered superconductors,
we obtain independent parallel and perpendicular vortex lattices. Specializing to the double-layer
case, we compute the parallel lower-critical field with entropic effects included, and find that
it vanishes exponentially as the temperature approaches the layer decoupling transition in zero
field. The parallel reversible magnetization is also calculated in this case, where we find that it
shows a crossover phenomenon as a function of parallel field in the intermediate regime of the
mixed phase in lieu of a true layer-decoupling transition. It is argued that such is the case for
any finite number of layers, since the isolated double layer represents the weakest link.

1. Introduction

The study of layered superconductivity has been reinvigorated by the discovery of the high-
temperature oxide superconductors [1]. In the case of the bismuth (Bi) and thallium (Tl)
based compounds, for example, the superconducting coherence lengthξc perpendicular to
the conducting planes is less than the separation between layers, and London theory fails [1].
Hence a Lawrence–Doniach (LD) type of description in terms of weakly Josephson-coupled
layers becomes necessary [2]. The following question then naturally arises: Does a layer
decoupling transition, aided perhaps by the introduction of a parallel magnetic field [3],
occur in such systems in addition to or in place of the conventional type-II superconducting
ones marked by the lower and upper critical fields [4],Hc1(T ) andHc2(T )?

In the absence of external magnetic field parallel to the layers, a layer decoupling
transition is indeed predicted to exist theoretically at a critical temperatureT∗ that lies
above that of the intra-layer Kosterlitz–Thouless (KT) transition temperature,Tc [5–8]. This
result is based on studies of theXY model with weakly coupled layers, which accurately
describes a layered superconductor in the absence of fluctuations of the magnetic field
[9, 10]; for example, in the intermediate regime of the mixed phase found in extreme
type-II superconductors, where it is appropriate to take the limitλL → ∞ for the
London penetration lengthλL. Also, recent experiments on Bi-based high-temperature
superconductors find evidence for a superconducting transition atT cc , where the c-axis
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resistivity vanishes, that lies a few tenths of a degree Kelvin above a second superconducting
transition temperatureT abc , where the resistivity in theab-planes vanishes [11, 12]. Hence
both theory and experiment find an extraordinary regime in temperature,Tc = T abc < T <

T∗ = T cc , where Josephson tunnelling between layers exists while the layers themselves
are resistiveand show no intra-layer phase coherence. (It has recently been argued in [13]
that T cc in fact marks a sharp crossover for the bulk case.) Finally, it is worth pointing
out that Monte Carlo simulations of the three-dimensional (3D)XY model obtain a similar
behaviour in the presence of a large magnetic field perpendicular to the layers [10].

The nature of layer decoupling in the presence of magnetic field parallel to the layers, on
the other hand, is less well understood. Early work by Efetov suggests that superconducting
layers decouple at high parallel fieldsB‖ > B

‖
∗(0) ∼ 80/d

2γ , where80 denotes the flux
quantum,γ = (mc/mab)1/2 is the mass anisotropy parameter, andd denotes the separation
between layers [3]. The latter calculation is based on a high-temperature series expansion
analysis of the LD model. A recent study of the same model by Korshunov and Larkin
that employs a Coulomb gas representation, however, finds no such layer decoupling in
the high-field limit for temperatures below the decoupling transition [14]. In this scenario,
therefore, the layers remain effectively Josephson coupled up to the parallel upper-critical
field, H ‖c2(T ).

In this paper, we shall also examine the decoupling of layered superconductors in
parallel magnetic field, but in film geometries of thickness much less than the in-plane
London penetration length, and at temperatures near the zero-field decoupling transition at
T∗ [5–7]. Specifically, we consider thin films of extreme type-II layered superconductors
(λL → ∞) in the intermediate regime (Hc1 � H � Hc2) of the mixed phase, which
can be described by a frustratedXY model with a finite number ofN weakly coupled
layers [10]. By working with the Villain form of the latter [7, 15], we obtain first that
the thermodynamics factorizes into independent perpendicular and parallel parts in the
presence of magnetic field at arbitrary orientation so long as the perpendicular component,
H⊥, of the latter is larger than the Glazman–Koshelev decoupling crossover scale [16],
B⊥∗ ∼ 80/d

2γ 2. The perpendicular thermodynamics is characterized by the melting of
two-dimensional (2D) vortices [17] that are decoupled from the parallel Josephson vortices,
as well as from the perpendicular 2D vortices in adjacent layers. This is a result of the fact
that well formed vortex loops traversing a few or more layers within the film are absent
in the present limit of weak inter-layer coupling [7]. In particular, the parallel Josephson
vortices are unable to make connections between perpendicular 2D vortices in the same or
in adjacent layer if the nearest-neighbour spacings between these perpendicular 2D vortices
is much less than the zero-temperature Josephson penetration length,λJ (0) ∼ γ d. This
situation occurs precisely for perpendicular fields that satisfyH⊥ � B⊥∗ , as stipulated above.
Also, since we first take the limit of extreme type-II superconductivity, we then have the
inequalityB⊥∗ � H⊥c1 ∼ 80/λ

2
L. This means that the former requirement guarantees that

the distance between perpendicular vortices is within the London penetration length, which
in turn guarantees that magnetic screening transverse to the perpendicular field component
is negligible. The parallel thermodynamics, on the other hand, is described by an LD model
in parallel magnetic fieldH‖, with a heavily renormalized anisotropy parameterγ (T ) that
diverges exponentially asT approaches the decoupling transition temperatureT∗ from below.
The renormalization down of the inter-layer coupling is due physically to the excitation of
vortex rings [5] (fluxons) that lie in between consecutive layers.

Second, we compute the line tension of a single Josephson vortex in the simplest case of
an isolated weakly coupled double-layerXY model, where we find that the parallel lower-
critical field H ‖c1(T ) of the double layer vanishes exponentially asT approachesT∗ from
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below. This result agrees up to a numerical factor with a recent calculation by the author
of the same critical field that employs an alternate ‘frozen’ superconductor description of
the Meissner phase in layered superconductors [8]. Related results have also been obtained
by Browne and Horovitz [18] in the setting of long Josephson junctions and by Horovitz
[6] via a fermion analogy for layered superconductors in parallel magnetic field. The
former coincidence is not surprising since the present double-layer type-II superconductor
is equivalent to a (dynamical) long Josephson junction at zero temperature [19–22] that
is effectively thinner than the London penetration length. In fact, the above analysis
proceeds by first considering the length of the vortex as imaginary time. Semiclassical
quantum corrections to the energy of the fundamental sine–Gordon soliton [23–25], which
corresponds to the Josephson vortex in the double layer, are then computed. Entropic
wandering of the vortex therefore translates into quantum fluctuations of the soliton. Note
that the wandering of Josephson vortices is equivalent to the excitation of double-layer
fluxons, which are again the physical origin of this phenomenon.

We next consider a one-dimensional lattice of Josephson vortices in the double layer.
After adapting certain elements from the analysis of long Josephson junctions in external
field [19–22] to the ‘semiclassical’ analysis discussed above in the case of a periodic array
of sine–Gordon solitons, we are able to compute the reversible magnetization as a function
of parallel magnetic field. Notably, we obtain a crossover fieldB‖∗(T ) ∼ 80/d

2γ (T ),
beyond which, generally, the magnetization displays aB−3

‖ tail characteristic of both long
Josephson junctions [19] and of layered superconductors in high parallel field [26] (see
figure 1)†. Unlike long Josephson junctions, however, this crossover field is much larger
than the lower-critical field. Thus we find no evidence for field dependence in the layer
decoupling transition temperature,T∗, within the present ‘semiclassical’ approximation,
which is in agreement with the results of Korshunov and Larkin [14]. Finally, we argue
that such is the case for any finite number of layers, since the isolated double layer represents
the weakest link.

The remainder of the paper is organized as follows: in section 2 we introduce the
frustratedXY model in the Villain form, from which we derive the renormalized LD model
for T < T∗. The double-layer case is the focal point of section 3, where we compute the
parallel lower-critical field and the parallel reversible magnetization from the above LD
model, in addition to the compressibility modulus of the corresponding vortex array and the
effective inter-vortex interaction potential in the dilute limit. We then apply these results
to the phenomenology of layered type-II superconductors in section 4, as summarized by
figure 2. Finally, we assess the validity of the present ‘semiclassical’ approximation, as
well as discuss the general case ofN layers, in section 5.

2. Frustrated XY model

The object now is to understand extreme type-II superconducting films composed of a
finite numberN of weakly coupled layers in the presence of external magnetic field. In the
intermediate regime of the mixed phase, where the magnetic field satisfiesHc1� H � Hc2,
the London penetration length is, in general, much larger than the inter-vortex spacing.
Following Li and Teitel [10], magnetic screening effects are then negligible, and we may
describe the system by a uniformly frustrated layeredXY model with an energy functional

† A recent analysis of double-layered superconductors that employs a new fermion analogy for the Lawrence–
Doniach model finds that the crossover shown by the magnetization as a function of parallel magnetic field (see
figure 1) is practically destroyed by entropic pressure effects for temperatures in the critical regime. See [27].
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Figure 1. Shown is the reversible parallel magnetization of an extreme type-II double-layer
superconductor in the intermediate regime of the mixed phase, i.e. the parallel fields satisfy
H
‖
c1 � H‖ ∼= B‖ � H

‖
c2. The crossover fieldB‖∗ , in particular, satisfies the latter inequalities (see

equation (51)). Also, the tail in the magnetization that appears at fields beyond this scale varies
asymptotically asH−3

‖ . Although these results are generally valid only for temperatures in the
Ginzburg–Landau regime, they should provide a good lower bound for−4πM‖ at temperatures
in the critical regime nearT∗ (see [27]).

given by

EXY = J‖
N∑
l=1

∑
r

∑
µ=x,y
{1− cos[1µφ(r, l)− Aµ(r, l)]}

+J⊥
N−1∑
l=1

∑
r

{1− cos[φ(r, l + 1)− φ(r, l)− Az(r, l)]}. (1)

Hereφ(r, l) is the phase of the superconducting order parameter on the layered structure,
wherer ranges over the square lattice with lattice constanta, and l is the index for the
layers separated by a distanced. We presume that the lattice constanta is larger than
the size of a typical Cooper pair. The magnetic flux threading the plaquette at site(r, l)
perpendicular to theµ = x, y, z direction reads8µ = (80/2π)

∑
ν,γ εµνγ1νAγ , where

80 = hc/2e is the flux quantum. Also,1µφ(r) = φ(r + µ̂)− φ(r) is the lattice difference
operator. The nearest-neighbour Josephson couplings are related to the respective masses
in Ginzburg–Landau theory by

J‖ = (h̄2/2m‖a2)(nsa
2d) (2a)

J⊥ = (h̄2/2m⊥d2)(nsa
2d) (2b)

wherens labels the superfluid density. Note thatJ‖ is independent of the lattice constant,
a, as required by scale invariance in two dimensions. Hence the anisotropy parameter,
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Figure 2. Shown is the phase diagram of a double-layer extreme type-II superconductor in
parallel external magnetic field near the critical regime. The KT transition temperatureTc
marks the point above which each individual layer becomes resistive in the absence of external
magnetic field, whileT∗ marks the layer-decoupling transition. The non-zero slope shown
by the parallel crossover field,B∗(T ), at temperatures below its point of inflection reflects the
temperature dependence of the bare Josephson penetration scale,30 (see equation (16)). Finally,
the dashed line represents the temperature profile for the parallel upper-critical field within the
Ginzburg–Landau approximation.

γ ′ = (J‖/J⊥)1/2, of theXY model is related to that of the mass,γ = (m⊥/m‖)1/2, by

γ ′ = γ d
a
. (3)

Throughout, we will presume weak coupling between layers,γ ′ � 1.
To compute the corresponding partition functionZ = ∫ Dφ(r) e−EXY /kBT , we now make

the usual (low-temperature) Villain substitution for the exponential factors above [15]; i.e.

e−β(1−cosθ)→ (2πβ)−1/2
∞∑

n=−∞
einθe−n

2/2β.

After integrating over the phase-field [7], we then obtain the following dual representation
equivalent toN -layered compact quantum electrodynamics (PQED) in the strong-coupling
limit (modulo a constant) [28]:

Z =
∑
{nµ(r)}

5rδ

[∑
ν

1νnν |r
]

× exp

[
− 1

2β‖

N∑
l=1

∑
r

n2(r, l)− 1

2β⊥

N−1∑
l=1

∑
r

n2
z(r, l)− i

∑
r,ν

nν(r)Aν(r)

]
(4)



5122 J P Rodriguez

wherenµ(r) is an integer link field on the layered lattice structure of pointsr = (r, l),
with µ = x, y, z andn = (nx, ny). Here, β‖,⊥ = J‖,⊥/kBT . Note that the conserved
integer fieldnµ is conjugate to the superfluid current1µφ − Aµ of the XY model (1)
in the continuum limit. To proceed further, let us now decompose the parallel field
n into transverse and longitudinal partsn(r, l) = n′(r, l) − n−(r, l) + n−(r, l − 1),
where the transverse and longitudinal fields,n′ andn−, respectively satisfy the constraints
∇ · n′ = 0 and∇ · n− = nz, with ∇ = (1x,1y). We then take the customary
potential representationn− = −∇8 for the longitudinal (inter-layer) field, which yields
8(r, l) =∑r′ G

(2)(r − r′)nz(r′, l), where

G(2)(r) =
∫
BZ

d2k

(2π)2
eik·r

4− 2 cos(kxa)− 2 cos(kya)
(5)

is (formally) the Green function for the square lattice. In the limit of weak coupling,
γ ′ → ∞, the interlayer fieldn− vanishes, which implies thatn′ is indeed an integer field.
After making a suitable (lattice) integration by parts of the energy functional in equation (4),
we then obtain the factorizationZ = ZCG5N

l=1Z
(l)
DG for the partition function in the limit

of weakly coupled layers, where

Z
(l)
DG =

∑
{n′(r,l)}

5rδ[∇ · n′|r,l ] exp

[
− 1

2β‖

∑
r

n
′2(r, l)− i

∑
r

n′(r, l) ·A(r, l)
]

(6)

is the partition function for the 2D discrete Gaussian model [29], with the in-plane vector
potentialA = (Ax,Ay) presumed to be in the gauge∇ · A = 0, while the inter-layer
Coulomb gas factor reads

ZCG =
∑
{nz(r,l)}

exp

{
− 1

2β‖

N∑
l=1

∑
r,r′

[nz(r, l − 1)− nz(r, l)]G(2)(r − r′)[nz(r′, l − 1)

−nz(r′, l)] − i
N−1∑
l=1

∑
r

nz(r, l)Az(r, l)− 1

2β⊥

N−1∑
l=1

∑
r

n2
z(r, l)

}
(7)

with the fields at the boundary layers set tonz(r, 0) = 0 = nz(r, N). This factorization
is consistent with the original layeredXY model (1) that consists ofN independent 2D
XY models in this limit. For the more relevant case ofγ ′ large compared to one, but
finite, we now make note of the fact that theseXY layers remain effectively decoupled in
the presence of perpendicular magnetic fields that are larger than the Glazman–Koshelev
decoupling scale [16],B⊥∗ ∼ 80/λ

2
J (0), where

λJ (0) = γ ′a = γ d (8)

is the Josephson penetration length. We therefore argue on a physical basis that the above
factorization prevails in the presence of Josephson coupling as long as the perpendicular
field satisfiesH⊥ � B⊥∗ in thin films of layered superconductors.

In the absence of external magnetic field,Aµ(r) = 0, each layer (6) thus undergoes a
KT transition atkBTc . (π/2)J‖, while the inter-layer linksnz(r) undergo an inverted 2D
Coulomb gas binding transition atkBT∗ = 4πJ‖ in the limit of weak inter-layer coupling,
γ ′ → ∞ [7]. (It is understood that the limit of vanishing Josephson coupling is taken
before that of vanishing perpendicular field.) The latter high-temperature transition, which
occurs well inside the normal phase of each individual layer, corresponds to the decoupling
of layers mediated by the binding of oppositely (nz) charged vortex rings lying in between
consecutive layers [5]. Note that this implies that Josephson coupling betweenresistive
layers exists in the temperature regimeTc < T < T∗ [8, 11, 12]! Forγ ′ large but finite, the
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form (7) of the layered Coulomb gas ensemble indicates that each set of consecutive double
layers is dielectrically screened by itself as well as by the neighbouring (N−2) such double
layers. Hence, they each can be considered in isolation from their neighbours as long as
one makes the replacementβ‖ → εN−1

0 β‖, whereε0 − 1 is the polarization of an isolated
double layer. Since the latter is directly proportional to the fugacity,y∗ = exp(−2πγ ′2), of
the Coulomb gas (7) atT∗ (see equation (11), later) [8], and since the decoupling transition
temperature is then given bykBT∗ ∼= 4πJ‖[1+ (N − 1)(ε0− 1)] in the limit of weak inter-
layer coupling, we obtain an implicit linear dependence for the corrections to the value of
T∗ with the fugacityy∗. Such a linear dependence agrees with the standard renormalization-
group flows that correspond to the 2D Coulomb gas [30]. As expected, the above formula
for T∗ also indicates that the decoupling transition temperature increases without bound with
the number of layers. In particular, the former linear increase crosses over to an exponential
increase atN0 ∼ (ε0−1)−1 layers, which is far beyond the 2D–3D crossover point expected
to occur atNc/0 ∼ γ ′ layers for the layeredXY model [31]. This is then consistent with the
fact that thebulk layeredXY model exhibits only a 3D superfluid transition at the bulkTc.
Note that the present factorization into parallel and perpendicular parts is unable to obtain
corrections for the value ofTc in the case of large but finite anisotropy parametersγ ′ [32].

Consider now equations (6) and (7) in the presence of a homogeneous magnetic
induction,

B‖ = 80

2πd
b‖ (9a)

B⊥ = 80

2πa
b⊥ (9b)

with the parallel component directed along they-axis, and withB⊥ � B⊥∗ to insure the
decoupling between 2D perpendicular vortices and parallel Josephson vortices explicit in the
previous factorization of (4) [16]. This decoupling becomes evident if we choose the gauge
Ax = 0,Ay = b⊥x, andAz = −b‖x, whereb‖ andb⊥ are the parallel (7) and perpendicular
(6) magnetic flux densities, respectively. In particular, each layer independently experiences
the perpendicular componentB⊥ = H⊥ of the magnetic induction†, which sets the intra-
layer vortex density to benV = |H⊥|/80. The fact thatnV � λ−2

J � λ−2
L in the present

limit of extreme type-II superconductivity insures that magnetic screening effects transverse
to the perpendicular field component can be neglected. Each layer will then independently
follow the 2D vortex lattice melting scenario [17], with a melting temperatureTm < Tc.
Since the issue of 2D vortex lattice melting has already been discussed extensively in the
literature with respect to the phenomenon of high-temperature superconductivity [1], we
shall end the present discussion here and focus our attention below on the thermodynamics
connected with the parallel component to the magnetic induction.

We now derive the renormalized LD theory [2–4] mentioned in the introduction. It is
useful first to make the following Hubbard–Stratonovich transformation of the Coulomb gas
ensemble (7) [34]:

ZCG =
∫
Dθ(r, l)

∑
{nz(r,l)}

exp

{
− β‖

2

N∑
l=1

∑
r

(∇θ)2− i
N∑
l=1

∑
r

θ(r, l)[nz(r, l)

−nz(r, l − 1)] − i
N−1∑
l=1

∑
r

nz(r, l)Az(r, l)− 1

2β⊥

N−1∑
l=1

∑
r

n2
z(r, l)

}
. (10)

† The perpendicular 2D vortices become coherent perpendicular vortex lines that are widened by parallel excursions
(Josephson vortices) in the low-field regimeB⊥ � B⊥∗ . See [16] and [33].
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Here θ(r, l) represents a real scalar field that lives on each layer. Suppose now that we
operate in the low-temperature regime,T < T∗, where the layers are coupled [5–7]. Then
inter-layernz charges in the Coulomb-gas ensemble are screened, which means that global
charge conservation is no longer enforced. Following the standard prescription [34], we
independently sum over charge configurations at each site, with the restriction to values
nz = 0,±1. In the limit that the fugacity

y0 = exp(−1/2β⊥) (11)

is small, we then find that the original Coulomb gas ensemble (7) is equivalent to a
renormalized Lawrence–Doniach modelZCG =

∫
Dθ(r, l)exp(−ELD/kBT ) with energy

functional

ELD = J‖
N∑
l=1

∑
r

1

2
(∇θ)2+ 2y0kBT

N−1∑
l=1

∑
r

{1− cos[θ(r, l + 1)− θ(r, l)− Az(r, l)]}.

(12)

At the decoupling transition in particular, we have that the fugacity (11) is given by
y∗ = exp(−2πγ

′2). Hence, the anisotropy parameter is renormalized up to

γ ′∗ =
(

J‖
2y∗kBT∗

)1/2

= (8π)−1/2eπγ
′2

(13)

at the decoupling transition in the present LD model. Since thenz charges physically
represent vortex rings (fluxons) that lie in between consecutive layers [5], we conclude that
such excitations are responsible for the renormalization (13) of the mass anisotropy near the
decoupling transition. In closing, we remind the reader that the above derivation of model
(12) is valid only for fugacities (11) that satisfyy0� 1, i.e. for temperaturesT > J⊥/kB .

3. Double layer

We shall now consider the parallel thermodynamics associated with the renormalized LD
model (12) in the special case of a double layer (N = 2), which is analytically tractable. This
case is very similar to a long Josephson junction [19–22] restricted to pass no net current
between the junction. Although the vortex lattice that results from the infinite-layer LD
model in a parallel field has far more structure than the simple vortex array corresponding
to an isolated double layer [26], we believe that it is sufficient to study the latter with respect
to the issue of layer decoupling in general, since it represents the weakest link.

For the special case of two weakly coupled layers in the presence of a homogeneous
parallel magnetic inductionB‖ directed along they-axis, the partition function corresponding
to the renormalized LD model energy functional (12) is expressible as

ZCG =
∫
Dθ̄ (r)Dφ(r′) exp

{
− ¯̄h−1

F

∫
dy LSG[φ] −

∫
d2r

β‖
2
(∇θ̄ )2

}
(14)

whereθ̄ (r) = 2−1/2[θ(r, 1)+ θ(r, 2)]. Here,

LSG[φ] =
∫

dx

[
1

2

(
∂φ

∂y

)2

+ 1

2

(
∂φ

∂x
− b‖

)2

+3−2
0 (1− cosφ)

]
(15)

represents the ‘Lagrangian’ for the sine–Gordon model in one space (x) and one imaginary
time (y = i t̄) dimension, with a bare temperature-dependent Josephson penetration length

30 = a(β‖/4y0)
1/2 (16)
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while the effective dimensionless Planck constant is

¯̄hF = 2/β‖. (17)

Notice that we have taken the continuum limit of the LD model (12), as well as made the
change of variableφ(r) = θ(r, 2) − θ(r, 1) − Az(r). The integration over̄θ on the right
of equation (14) results in a trivial Gaussian factor. Below, we shall exploit the quantum
mechanical analogy suggested above for the non-trivial sine–Gordon factor in order to
compute the parallel lower-critical field [8] and the parallel reversible magnetization of the
double-layer system.

3.1. Single Josephson vortex

We now set ourselves to the task of computing the parallel lower-critical field,H
‖
c1, of the

double-layer system, which is in general related to the free energy per unit length of a
single Josephson vortex,ε‖, by [1] H ‖c1 = 4πε‖/80. Let us therefore consider the effective
sine–Gordon model (15) in the presence of a single Josephson vortex aligned along the
y-axis, i.e. the homogeneous magnetic flux is set tob‖ = 0, while the phase-difference
field winds once along thex-axis;

∫∞
−∞ dx ∂φ/∂x = 2π . In the absence of thermal (or

‘quantum’) fluctuations, the vortex line tension is given by the Ginzburg–Landau energy

ε0
‖ =

J‖
2
LSG[φ0] = 4J‖

30
(18)

of the ‘static’ fundamental sine–Gordon soliton

φ0(x, y) = 4 tan−1 ex/30 (19)

which is a solution of the field equation

−∂
2φ

∂x2
+3−2

0 sinφ = 0 (20)

obtained by minimizing the corresponding ‘action’LyLSG[φ0] [23, 25], and which represents
the single Josephson vortex. For temperatures near the decoupling transition atT∗, however,
vortex wandering is critical [8], and entropic (or ‘quantum mechanical’) corrections to the
vortex line energy (18) must be accounted for.

We shall now include the effects of thermal wandering in the double-layer Josephson
vortex (19) by first Wick rotating they coordinate to a real time-like coordinate,y = i t̄ .
Second, we observe thatthe free energy per unit length of the Josephson vortex is equal to
the product of12J‖ with the ‘quantum mechanically’ renormalized ‘mass’ of the fundamental
sine–Gordon soliton. To obtain the latter, we shall employ the ‘semiclassical’ approximation
[24, 25] generally valid in the limit̄̄hF → 0, i.e. at low temperature. In particular, consider
small deviationsφ = φ0 + φ1 from the ‘static’ vortex configuration (19). Then integration
by parts yields that (15) is approximately

LSG[φ] ∼= LSG[φ0] + 1

2

∫
dx φ∗1

(
∂2

∂t̄2
− ∂2

∂x2
+3−2

0 cosφ0

)
φ1 (21)

to second order in the deviation. Hence, in the presence of the soliton, we obtain a spectrum
of harmonic oscillators of the formφ1(x, t̄) = ψ(x)eiωt̄ , where(

− ∂2

∂x2
+3−2

0 cosφ0

)
ψ = ω2ψ. (22)

It is well known [23, 25] that the spectrum corresponding to (22) is composed of a zero mode

ψb(x) = sech(x/30) ωb = 0 (23)
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that lies within the gap of the continuum

ψk(x) = eikx [k + i3−1
0 tanh(x/30)] ωk = (k2+3−2

0 )1/2. (24)

In the ‘semiclassical’ approximation [25], the ‘transition amplitude’ over a period of ‘time’
T̄0 is given by the productZSG[1] = exp(−iT̄0ε

0
‖/kBT )5kzk, where

zk =
∞∑
n=0

exp

[
−iωkT̄0

(
n+ 1

2

)]
(25)

gives the corresponding amplitude of each harmonic oscillator. After Wick rotating back to
imaginary timeLy = iT̄0, we observe that only then = 0 terms above survive the limit of
a long vortex,Ly →∞. Yet the ratio of the partition functions in the presence of a single
Josephson vortex to that in its absence is in general related to the vortex line tension,ε‖,
by ZSG[1]/ZSG[0] = exp(−Lyε‖/kBT ). In the ‘semiclassical’ limit, therefore, we obtain

ε‖ = ε0
‖ +

kBT

2

(∑
k

ωk −
∑
q

ωq

)
(26)

for the line tension [24, 25], where thek sum and theq sum above correspond respectively
to traces of the zero-point energy in the presence and in the absence of the fundamental
sine–Gordon soliton. In particular, the presumption of periodic boundary conditions along
x implies the quantization conditionskLx + δ(k) = 2πn andqLx = 2πn, where

δ(k) = 2 tan−1(1/k30) (27)

is the phase shift of the continuum states (24), and wheren is any integer. Properly counting
these states then yields that the difference in brackets,

∑
n(ωk − ωq), in equation (26) is

equal to [24, 25]−(2π)−1
∫∞
−∞ dk(dωk/dk)δ(k) in the limit Lx →∞. After introducing a

momentum cut-off,r−1
0 , and integrating by parts, we obtain

ε‖ = ε0
‖[1− (4πβ‖)−1 ln(30/r0)]. (28)

Notice that the correction above to the low-temperature line tension is first order in¯̄hF , and
that it can be interpreted as a renormalization to the ‘mass’,3−1

0 , of the sine–Gordon model
(15). Since a renormalization group exists, we may now express the line tension as

ε‖ = 4J‖/λJ (29)

and then iterate equation (28), which yieldsλ−1
J = 3−1

0 exp[−(4πβ‖ε0)
−1 ln(λJ /r0)], or

r0

λJ
=
(
r0

30

)[1−(4πβ‖ε0)
−1]−1

. (30)

Above, we have replaced the right-hand side of equation (28) by the previous exponential
and included the dielectric correctionε0 to the on-site Coulomb-gas (7) potential, ln(λJ /r0).
Employing the standard renormalization group result [30],ε0 = 1+O[(β‖ −β∗)1/2], for the
dielectric constant of the 2D Coulomb gas at (inverted) temperaturesβ‖ just above the (in-
verted) transition temperatureβ∗ = 1/4π , we thus obtain that the renormalized Josephson
penetration lengthλJ diverges exponentially as it approaches the decoupling transition like

λJ /a = C exp[D/(β‖ − β∗)1/2]. (31)

Here,C andD are non-universal numerical constants.
In conclusion, the parallel lower-critical fieldH ‖c1 = 4πε‖/80 vanishes exponentially

fast near the decoupling transition of the double layer following equations (29) and (31).
Horovitz has obtained this result employing a fermion analogy for layered superconductors
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in parallel magnetic field [6]. A similar dependence has also been proposed by Browne
and Horovitz for the lower-critical field of long Josephson junctions [18]. Combining
equation (2a) with the identity (80/λL)

2 = (2π)3(h̄2/2m‖)ns for the bulk (N → ∞)
in-plane London penetration lengthλL yields

J‖
d
= (2π)−38

2
0

λ2
L

(32)

from which we obtain the useful expression

ε‖(T ) = 8

π
γ−1

[
80

4πλL(T )

]2
λJ (0)

λJ (T )
. (33)

Given thatC ∼ γ ′ in equation (31), which is consistent with expression (8) for the Josephson
penetration length of the originalXY model (1) at zero temperature, then we have by
equation (31) thatλJ (0)/λJ (T ) ∼ exp[−D/(β‖ − β∗)1/2] near the decoupling transition.
This result agrees up to a numerical constant with a previous calculation by the author of
the same quantity using an alternative ‘frozen’ superconductor model for highly anisotropic
extreme type-II superconductors in the Meissner phase [8]. Notice then that expression (33)
for the parallel line tension is essentially independent of the lattice constanta, as expected
by the 2D scale invariance of the LD model (1) forT > T∗.

Before we go on to consider an array of Josephson vortices in the next section, a
few remarks are called for. First, note that the point at which the soliton ‘mass’, 2ε‖/J‖,
vanishes coincides with the layer decoupling transition. Similar effects are found in the
case of the nonlinearσ model in two space and one time dimensions, which describes
the quantum 2D antiferromagnet. In particular, the quantum mechanically renormalized
energy of the corresponding topological soliton called a skyrmion vanishes precisely at
the zero-temperature quantum critical phase transition into the quantum disordered phase
characterized by a spin gap [35]. Second, note that we have essentially recovered the
standard renormalization group results for the KT transition [30] via the present semiclassical
quantization of the sine–Gordon soliton energy in one space and one time dimension.
Finally, also observe that the entropic correction to the line-tension in equation (28) indicates
that the number of microstates per unit lengtha of a Josephson vortex in thermal equilibrium
is λJ /r0. Given thatr0 ∼ a, thenλJ can be naturally interpreted as the effective width of
the Josephson vortex.

3.2. Array of Josephson vortices

Consider now the case of a non-zero homogeneous magnetic induction aligned parallel to
the y-axis of the double layer, i.e.b‖ 6= 0. Then it is easily seen from equation (15) that
the superfluid portion,

Gs −Gn = −kBT ln
∫
Dφ exp

[
− ¯̄h−1

F

∫
dyLSG[φ]

]
(34)

of the Gibbs free energy [36] is minimized with respect tob‖ at b‖ = L−1
x

∫∞
−∞ ∂φ/∂x. In

other words, the average winding per unit length in any configuration of the phase difference
between the double layers is set by the magnetic induction. In the particular case of the
low-temperature ‘classical’ configuration, we then have that the parallel magnetic induction
is related to the lattice constanta0 of the corresponding array of Josephson vortices by

b‖ = 2π

a0
. (35)
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Clearly, we expect qualitative differences between the thermodynamics of the low-field
regime,a0 � λJ , and of the high-field regime,a0 � λJ . Yet does a decoupling phase
transition separate the two regions, as has been suggested in the literature [3]? Below we
give evidence for the existence of only a crossover [14] on the basis of a ‘semiclassical’
analysis of the reversible magnetization (see [27]) and of the elastic compression modulus
of the vortex array.

We now set ourselves to the task of computing the parallel reversible magnetization
[36]

M‖ ∼= − ∂

∂B‖

(
Gs −Gn

LxLyd

)
(36)

of the double layer in the intermediate regime of the mixed phase,H
‖
c1� B‖ � H

‖
c2, where

H‖ ∼= B‖. Consider first the lowest-order Ginzburg–Landau contribution

G0
s −Gn = Ly J‖

2
LSG[φ0] (37)

to the Gibbs free energy in powers of¯̄hF , whereφ0(x) represents the whirling pendulum
solution of field equation (20) with spatial perioda0, i.e. [19–22]

dφ0

dx
= 2

κ30
dn

(
x − x0

κ30

∣∣∣∣κ2

)
(38)

where the parameterκ lies in the interval between zero and unity, and is set by the period
a0 following

a0 = 230κK(κ
2). (39)

Above, dn(u|κ2) represents the appropriate Jacobian elliptic function, whileK(κ2)

represents the complete elliptic integral of the first kind [37]. Conservation of energy,
E0 = 23−2

0 (κ−2− 1), in the corresponding pendulum system yields

LSG[φ0]

Lx
= 2

[
a−1

0

∫ a0

0
dx

1

2

(
dφ0

dx

)2
]
− E0− 1

2
b2
‖.

We obtain, therefore, that the zero-order Gibbs free energy density is equal to

G0
s −Gn

LxLy
= J‖
32

0

[
2

κ2

E(κ2)

K(κ2)
+ 1− κ−2

]
− J‖

2

b2
‖

2
(40)

whereE(κ2) represents the complete elliptic integral of the second kind [37]. Standard
manipulations [19] then yield that the reversible magnetization (36) is given by

−4πM‖ = H ‖c1
[
E(κ2)

κ
− π

2

4

1

κK(κ2)

]
(41)

whereH ‖c1 = 4πε0
‖/80 is the parallel lower-critical field in the Ginzburg–Landau theory

approximation. Note thatH ‖c1 naturally sets the maximum value of the diamagnetic
magnetization (41) at zero magnetic induction (κ = 1). In particular, at low magnetic
inductionsa0� 30, we have by (39) thatκ2 ∼= 1−16 e−a0/30. We then obtain the limiting
behaviour

−4πM‖ ∼= H ‖c1
[

1+ 4 e−a0/30

(
a0

30
+ 1

)
− π

2

2

30

a0

]
(42)
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for the reversible magnetization (41). Hence, the low-field magnetization extrapolates to
zero at

B
‖
0 =

2

π2

80

30d
(43)

which defines a bare crossover field. At high fieldsa0 � 30, on the other hand, (39)
dictates thatκ ∼= π−1a0/30. We then obtain that the limiting behaviour for the reversible
magnetization (41) is given by

−4πM‖ ∼= H
‖
c1

64π2

(
a0

30

)3

(44)

in such a case. This implies aB−3
‖ tail at high fieldsB‖ � B

‖
0 which is characteristic of

long Josephson junctions and of layered superconductors in general [19, 26]. A plot of result
(41) spanning both the high-field and low-field limits is shown in figure 1. Note that the
bare crossover fieldB‖0 is much larger than the Ginzburg–Landau lower-critical fieldH

‖
c1 in

the present double-layer extreme type-II superconductor (see equation (51), later). This is
qualitatively different from the case of a long Josephson junction [19], whereB

‖
0 ∼ H ‖c1.

In analogy with the previous analysis of a single Josephson vortex, let us now consider
the effect of ‘semiclassical’ corrections to the reversible magnetization in a parallel field
(41). We again have a spectrum (21) of harmonic oscillatorsφ1(x, t̄) = ψ(x) eiωt̄ that
satisfy the linearized field equation (22), but with a periodic configuration for the phase
difference set by [20, 21]

cos
1

2
φ0 = −sn

(
x − x0

κ30

∣∣∣∣κ2

)
(45)

where sn(u|κ2) represents the appropriate Jacobian elliptic function [37]. To be more
specific, the spatial factors of each oscillator satisfy Lamé’s equation [21],[

− ∂2

∂x2
+ 23−2

0 sn2

(
x − x0

κ30

∣∣∣∣κ2

)
−3−2

0

]
ψ = ω2ψ. (46)

To make contact with the previous discussion of a single Josephson vortex, let us now
focus our attention on the (bare) low-field regimeB‖ � B

‖
0, where the parameterκ is

exponentially close to unity, sincea0 � 30. This allows us to approximate the potential
terms in Laḿe’s equation [−∂2/∂x2+ V (x)]ψ = (ω2−3−2

0 )ψ by

V (x) ∼= −
∞∑

n=−∞
23−2

0 sech2
(
x − x0− na0

30

)
(47)

where each term above corresponds to the potential associated with a fundamental sine–
Gordon soliton centred atx0+ na0. In general, the band structure corresponding to Lamé’s
equation (46) is composed of a continuum and a zero-mode band separated by a gap
[21, 37]. A curious feature particular to each potential term in equation (47), however,
is its transparency[23], i.e. the continuum oscillators (24) of the fundamental sine–Gordon
soliton have no reflected wave component. Therefore, in the present (bare) low-field limit,
the upper continuum band is essentially the same as that of a fundamental soliton (24).
Repeating the renormalization group arguments made in the previous section for the line
energy of a single Josephson vortex then indicates that the entropic correction due to the
latter continuum band can be accounted for by simply replacing30 (16) with λJ (31) in
the original Ginzburg–Landau free energy of the vortex lattice, i.e.

Gs −Gn = J‖
2

∫
dy
∫

dx

[
1

2

(
∂φ0

∂y

)2

+ 1

2

(
∂φ0

∂x

)2

− 1

2
b2
‖ + λ−2

J (1− cosφ0)

]
(48)



5130 J P Rodriguez

with the lattice constant of the vortex array (38) set by equation (35). In general, however,
the effects of the zero-mode band must also be included in the present semiclassical analysis.
The corresponding states are given by the tight-binding ansatz|k0〉 =

∑
n eik0a0n|n〉 in the

present (bare) low-field limit, where〈x|n〉 = ψb(x − x0 − na0) is the (normalized) bound
state (23) of the fundamental soliton located at thenth well. The hopping matrix element
is therefore

−t0 = 〈n| − ∂2

∂x2
+ V (x)|n+ 1〉 = (ω2−3−2

0 )〈n|n+ 1〉.

But 〈n|n + 1〉 ∼= 2πe−a0/30 is much less than unity, which yieldst0 ∼= (2π/32
0) e−a0/30.

This means that the zero-mode band has a spectrumω0(k0) = 2t1/20 | sin( 1
2k0a0)| that

is exponentially narrow. By (25), the zero-mode band results in an entropicpressure
contribution to the Gibbs free energy density given by

P0 = kBT

d
L−1
x

∑
k0

1

2
ω0(k0) = 2

π

kBT

a0d
t

1/2
0 . (49)

Hence, the magnetization (36) acquires adiamagneticcorrection−∂P0/∂B‖ of order
e−a0/230, which is negligibly small in the present (bare) low-field limit. Equation (42)
indicates, however, that the low-field correction to the initial linear increase of the parallel
magnetization varies as e−a0/30 in the Ginzburg–Landau regime. Unlike the case of a single
Josephson vortex, then no obvious renormalization group appears to exist for the above
entropic pressure contribution.

In conclusion, double-layer extreme type-II superconductors in parallel magnetic field
are described by the effective Ginzburg–Landau free energy (48), along with the boundary
condition (35), in the bare low-field limitB‖ � B

‖
0 of the intermediate regime,H ‖c1� B‖ �

H
‖
c2. This means that the reversible magnetization is determined by the original Ginzburg–

Landau theory analysis (equations (36)–(44)), where the bare Josephson penetration length
30 is replaced by the renormalized lengthλJ throughout. In particular, the true parallel
crossover field (see figure 1) of the double layer is given by

B‖∗ =
2

π2

80

λJ d
(50)

instead of by equation (43). However, our inability to find a renormalization group for the
entropic pressure contribution (49) to the parallel magnetization suggests that the present
renormalized Ginzburg–Landau theory result for−4πM‖ serves only as a strong lower
bound in the critical regime [27]. We therefore find evidence for at best a crossover as a
function of magnetic field below the bare scaleB‖0, and no evidence for a decoupling phase
transition at fixed temperature. Finally, it is easily shown after employing relation (32) that

B
‖
∗

H
‖
c1

= λ2
L

d2
. (51)

This of course indicates that the crossover field is much larger than the lower-critical field,
which validatesa posteriori the assumption (36) thatH‖ ∼= B‖ in the intermediate regime
of the mixed phase. It also illustrates the qualitative difference between a double-layer
superconductor and a long Josephson junction [19], whereB

‖
∗ ∼ H ‖c1.

We shall close this section by computing the compression modulus of the parallel array
of Josephson vortices, as well as the interaction energy between widely spaced vortices.
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The local change in the elastic free-energy density due to a local fluctuationδnV in the
vortex density is given byδfSG = 1

2(∂
2fSG/∂n

2
V )(δnV )

2, where

fSG = J‖
λ2
J d

[
2

κ2

E(κ2)

K(κ2)
+ 1− κ−2

]
(52)

is the Gibbs free-energy density (48) modulo the− 1
2b

2
‖ term (see equation (40)), which can

be considered as part of the magnetic field energy. In general, the number of Josephson
vortices per unit length along thex-axis is nV = a−1

0 = b‖/2π . By differentiating
the first term in equation (41) once with respect tob‖, we thus obtain∂2fSG/∂n

2
V =

(8J‖/d)(1 − κ2)[K(κ2)]3/E(κ2). Now the displacement fieldu(x) of the vortex array
along thex-axis is related to the density fluctuation byδnV = −a−1

0 (∂u/∂x). Therefore,
employing previous identities ((9a), (32) and (35)), we find that the elastic energy is given
by δfSG = 1

2c11(∂u/∂x)
2, where the compression modulus reads

c11 = π−3
d2B2

‖
λ2
L

[K(κ2)]3

E(κ2)
(1− κ2). (53)

In the low-field limit B‖ � B
‖
∗ we then have that the array is exponentially soft [22], with

c11 ∝ e−a0/λJ . Similar softening of the Abrikosov vortex lattice occurs in conventional
superconductors near the lower critical field, but with the Josephson penetration lengthλJ
replaced by the London penetration lengthλL [38]. On the other hand, the high-field limit
B‖ � B

‖
∗ yields thatc11

∼= (4π)−1(d/λL)
2B2
‖ , which is a formula characteristic of the

elastic moduli in extreme type-II superconductors (λL→∞) generally [1].
Finally, we may define the interaction energy between two well separated vortices by

subtracting the line tension (29) from the free energy (52) per unit length of a single period
in the array of Josephson vortices, i.e. the repulsive interaction energy per unit length is
given by

v(a0) = da0fSG − ε‖ (54)

in the low-field limit a0� λJ , which after some analysis yieldsv(a0) = J‖λ−1
J (1− κ2), or

v(x) = 16J‖λ−1
J e−|x|/λJ . (55)

Note that the Josephson penetration lengthλJ acts as the screening length for the interaction
between Josephson vortices instead of the London penetration length, which plays the same
role in conventional type-II superconductors.

4. Phenomenology

We shall now examine the phenomenological consequences of the previous results for
(double) layered superconductivity in parallel external magnetic field. Let us first consider
the critical properties of the decoupling transition in the the absence of parallel magnetic
induction, i.e. takeH‖ near H ‖c1. Given the standard Ginzburg–Landau dependence,
λL(T ) = λ0(1− T/Tc0)−1/2, for the bulk (N → ∞) in-plane London penetration length,
then (32) yields

J‖(T ) = γ−1kBT0(1− T/Tc0) (56)

for the intra-layer Josephson coupling energy, where

kBT0 = 2

π

(
80

4πλ0

)2

γ d (57)
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is the basic energy scale of the problem. Since the zero-field decoupling transition occurs at
kBT∗ = 4πJ‖(T∗), we then obtainT∗ = [T −1

c0 + γ (4πT0)
−1]−1 for the decoupling transition

temperature. This means that the size of the critical regime is

δT∗ = Tc0− T∗ ∼= γ T 2
c0/4πT0 (58)

for Tc0 � T0, which is typical. Likewise, the critical temperatureTc at which each
individual layer undergoes a superfluid KT transition is set bykBTc ∼= (π/2)J‖(Tc), or
Tc ∼= [T −1

c0 + γ ((π/2)T0)
−1]−1. Hence, the distance of this intra-layer resistive transition to

the Ginzburg–Landau transition temperatureTc0 is δTc = Tc0−Tc ∼ 10δT∗, as indicated by
figure 2. Again, we highlight the extraordinary regime in temperatureTc < T < T∗ where
the layers are normal yet Josephson coupled, i.e.ρ‖ 6= 0 andH ‖c1(T ) 6= 0. This effect has
been recently observed in resistance measurements on the highly anisotropic bismuth-based
series of high-temperature superconductors [11, 12].

Results similar to those outlined above have been obtained recently by the author using
an alternative anisotropic ‘frozen’ superconductor model for the Meissner phase [8], but with
the important exception that the zero-temperature Josephson penetration length (8) appearing
above in equation (57) is replaced therein by the zero-temperature London penetration
length λ0. This discrepancy can be understood as follows: in the present frustratedXY

model description (1) of the mixed phase, we take first the limitλ0 → ∞, and then the
limit γ → ∞, which results in the characteristic Josephson penetration lengthγ d. In the
anisotropic ‘frozen’ superconductor model for the Meissner phase [8], on the other hand,
the order of the limits is reversed, hence the characteristic length scaleλ0. Both models,
however, obtain the same expression for the parallel lower critical field (33) near criticality
up to a numerical constant. In particular, we predict thatH

‖
c1(T ) vanishes exponentially as

temperatureT approaches the decoupling transition from below, which implies the existence
of an inflection point belowT∗ in this temperature profile (see figure 2).

In the presence of external parallel magnetic field, we expect that (double) layered
extreme type-II superconductors follow a crossover phenomenon as a function of this
field in the intermediate regime of the mixed phase. In particular, equations (39) and
(41) indicate (with30 replaced byλJ ) that the parallel magnetization has the form
−4πM‖ = H

‖
c1(T )f [B‖/B

‖
∗(T )], where the latter functional dependence with parallel

magnetic induction is plotted in figure 1. Note that in the mixed phase at low magnetic
induction,B‖ � B

‖
∗ , we have that−4πM‖ . Hc1(T ). Hence, the parallel magnetization

inherits the inflection of the parallel lower-critical field as a function of temperatureT . T∗
at fixedB‖. Figure 2 shows the phase diagram expected of a (double) layered superconductor
in parallel external magnetic field near the critical regime discussed above. Formula (50) for
the crossover field has been employed here, where the Josephson penetration lengthλJ (T )

is interpolated between its behaviour at criticality (31) and its low-temperature value of
γ d. Note thatB‖∗ is expected to be practically constant at low temperatures since the mass
anisotropy parameterγ has no temperature dependence in this regime. We therefore expect
the crossover field to exhibit an inflection point in its temperature profile, much like the
parallel lower-critical field does. By equation (51), however, the ratio ofB

‖
∗ to H ‖c1 should

be larger at criticality with respect to zero temperature by a factor ofλ2
L(T∗)/λ

2
L(0), which

in the Ginzburg–Landau theory approximation is given by 4πT0/γ T∗ ∼ Tc0/δT∗. Lastly, in
spite of the above crossover phenomenon, the parallel vortex lattice (and flux quantization)
will persist up to the parallel upper-critical field. In the Landau–Ginzburg approximation,
this field is set by the in-plane coherence lengthξ = ξ0(1− T/Tc0)−1/2 and by the mass
anisotropy to beH ‖c2 = γ80/2πξ2, hence the inequalityB‖∗ � H

‖
c2. The critical behaviour

of H ‖c2(T ) near the decoupling transition atT∗, however, remains unknown.
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We shall now examine the various physical scales that arise from the present theory in the
context of high-temperature superconductivity. The oxide superconductor Bi2Sr2CaCu2O8

may be classified as a layered superconductor with an extreme mass anisotropy [1],γ ∼ 100.
Assuming typical parametersTc0 ∼ 100 K, d = 15 Å and λ0 ∼ 103 Å, we obtain from
equation (58) thatδT∗ ∼ 0.5 K. It is interesting to remark that the zero-temperature
Josephson penetration lengthγ d and the zero-temperature London penetration length,λ0,
are of the same order of magnitude in this material. The fact that the present estimate for
the size of the critical region is smaller by an order magnitude with respect to the estimate
based on the above-mentioned anisotropic ‘frozen’ superconductor model [8] is simply then
a result of the numerical factor in equation (58). Both theories, on the other hand, predict
an inflection point in the temperature profileH ‖c1(T ) (see figure 2). Wanet al [12] also
observe an inflection point in the field of first penetrationHp versusT for Bi2Sr2CaCu2O8,
but in the perpendicular orientation. This may be a vestige of the same prediction made here
for the parallel lower-critical field if geometrical demagnetization effects are presumed to
be strong. In particular, consider the regime in temperatureTc < T < T∗, where the planes
are resistive while remaining Josephson coupled, and hence where only parallel Josephson
vortices exist [8]. Then the field of first penetration in the perpendicular orientation is
limited only by those portions of the field lines that runparallel to the top and bottom
layers of the sample. Clearly, direct measurements of the parallel lower critical field in
the critical regime of these materials would be highly desirable. Finally, we mention that
the parallel crossover field (50) at zero temperature,B

‖
∗(0) = (2/π2)(80/d

2γ ), should be
approximately 2 T for Bi2Sr2CaCu2O8, while it should be orders of magnitude smaller at
temperatures just below the decoupling transition temperature. We therefore suggest that
the parallel reversible magnetization be measured in a clean thin film of this material near
criticality [27], where the crossover field is expected to be quite modest in magnitude. Note
that the present theory is valid only for perpendicular components of magnetic induction
with magnitude greater than the perpendicular crossover field [16]B⊥∗ ∼ 80/d

2γ 2, which
in the case of Bi2Sr2CaCu2O8 is approximately 1 kG.

5. Discussion

In summary, we find no evidence for field dependence in the decoupling transition
temperature,T∗, of clean double-layered extreme type-II superconductors in the intermediate
regime of the mixed phase. Since the double layer represents the weakest link, we believe
that this result remains true in the general case of any finite number of layers as long
as the interlayer coupling is weak enough so that the system remains effectively 2D; for
example, for perpendicular fields above the Glazman–Koshelev 2D–3D crossover scale,
B⊥ ∼ 80/γ

2d2, which guarantees the absence of vortex loops that traverse many layers
[16]. In general, the extreme type-II limitNd � λL must be taken first, however, so that
magnetic screening effects may be neglected. Also, the effect of pinning centres is not
expected to be relevant in the critical regime, since the Josephson penetration lengthλJ (T )

diverges exponentially as temperatureT approachesT∗ from below. We do, however, find
a crossover field above which the parallel reversible magnetization decays with parallel
magnetic fieldH‖ asH−3

‖ in the double-layer case (see figures 1 and 2, and [27]). The
array of Josephson vortices is nevertheless expected to persist up to the parallel upper-
critical field. It is important to mention that the present double-layer study cannot account
for effects due to the first-order commensuration transitions predicted to occur in the parallel
vortex lattice with many layers [26].
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In order to account for the entropy due to wandering of the Josephson vortices in
the calculations reported above, we have considered the length dimension of the vortex
as imaginary time, and proceeded to compute the corresponding ‘quantum mechanical’
correction to the ‘mass’. Employing a renormalization-group improved semiclassical
approximation to this end, we have found that the parallel lower-critical field vanishes
exponentially as it approaches the decoupling transition temperature from below. Very
similar results have been obtained recently by the author using an alternative anisotropic
‘frozen’ superconductor model that operates from the Meissner phase [8]. Note that
although the dimensionless Planck constant (17) has a value of¯̄hF = 8π at the decoupling
transition, which is far from being small, it is suspected that the above cited renormalization-
group, improved semiclassical results are in fact exact for the case of a single Josephson
vortex [24, 25]. Less is known, however, with respect to the validity of the semiclassical
approximation in the critical regime for the case of the array. For example, we have
computed the entropic pressure (49) of the array to first order in powers of the effective
dimensionless Planck constant (17) and found it to be negligibly small at fields below a
relatively large bare scale (43). However, we were unable to find a renormalization group for
this contribution. Also, it has been argued in the literature that the pressure exerted between
interfaces in two dimensions generally varies quadratically with temperature [39], which
translates into a second-order correction in the present semiclassical approximation. These
effects generally stiffen the array of Josephson vortices and add a diamagnetic contribution
to the high-field tail shown by the parallel magnetization (see figure 1 and [27]). However,
any such additional diamagnetic correction does not affect the conclusion drawn here that
no layer decoupling transition occurs as a function of external magnetic field in extreme
type-II layered superconductors since it only results in astiffer vortex lattice.
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[25] Rajaraman R 1987Solitions and Instantons(Amsterdam: North-Holland)
[26] Bulaevskii L and Clem J R 1991Phys. Rev.B 44 10 234
[27] Rodriguez J P 1995 Fermion analogy for layered superconducting films in parallel magnetic fieldICMM-CSIC

Reportcond-mat/9606154
[28] Polyakov A 1978Phys. Lett.72B 477

Susskind L 1979Phys. Rev.D 20 2610
Savit R 1978Phys. Rev.B 17 1340

[29] van Beijeren H and Nolden I 1987Structure and Dynamics of Surfaces IIed W Schommers and P von
Blanckenhagen (Heidelberg: Springer)

[30] Kosterlitz J M 1974J. Phys. C: Solid State Phys.7 1046
Minnhagen P 1987Rev. Mod. Phys.59 1001

[31] Hikami S and Tsuneto T 1980Prog. Theor. Phys.63 387
Chattopadhyay B and Shenoy S R 1994Phys. Rev. Lett.72 400

[32] Shenoy S R and Chattopadhyay B 1995Phys. Rev.B 51 9129
[33] Janke W and Matsui T 1990Phys. Rev.B 42 10 673
[34] Polyakov A M 1977 Nucl. Phys.B 120 429

Polyakov A M 1987 Gauge Fields and Strings(New York: Harwood)
[35] Rodriguez J P 1989Phys. Rev.B 39 2906

Rodriguez J P 1990Phys. Rev.B 41 7326
[36] de Gennes P G 1989Superconductivity of Metals and Alloys(New York: Addison-Wesley) ch 3
[37] Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions with Formulas, Graphs, and

Mathematical Tables(New York: Dover) ch 16–17
Whittaker E T and Watson G N 1952A Course on Modern Analysis(Cambridge: Cambridge University)

[38] Larkin A I 1970 Zh. Eksp. Teor. Fiz.58 1466 (Sov. Phys.–JETP31 784)
[39] See for example Coppersmith S N, Fisher D S, Halperin B I, Lee P A and Brinkman W F 1982Phys. Rev.

B 25 349


